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Highlights 

 New characterization of CNC aggregation by TEM and morphological 

classification 

 Models trained with large number of CNC aggregates of diverse morphology 

and source 

 It can detect application-critical high complexity, low compactness CNC 

aggregates  

 Models are persistent and reusable for characterization of other CNC 

aggregates  

 Approach and models usable as standard for CNC characterization with other 

methods 
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ABSTRACT  

Dispersion of cellulose nanocrystals (CNCs) is of utmost importance to guarantee their 

reliable application. Nevertheless, there is still no consensual method to characterize CNC 

aggregation. The hypothesis of this paper is that dispersion could be quantified through 

the classification of aggregates detected in transmission electron microscopy images. k-

Means was used to classify image particulate elements of five CNC samples into groups 

according to their geometric features. Particles were classified into five groups according 

to their maximum Feret diameter, elongation, circularity and area. Two groups 

encompassed the most application-critical aggregates: one integrated aggregates of high 

complexity and low compactness while the other included elongated aggregates. In 

addition, the characterization of CNC dispersion after different levels of sonication was 

achieved by assessing the change in the number of elements belonging to each cluster 

after sonication. This approach could be used as a standard for the characterization of the 

aggregation state of CNCs.  

Keywords: cellulose nanocrystals; nanocellulose; transmission electron microscopy; 

aggregation state; k-Means clustering; dispersion  
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1. INTRODUCTION 

Cellulose nanocrystals (CNCs) present exceptional properties that make them suitable for 

many application fields, such as biomedical, wastewater treatment, energy and electronics 

(Grishkewich, Mohammed, Tang & Tam, 2017). An adequate dispersion of CNCs particles 

in suspension is crucial to ensure their efficiency (Shojaeiarani, Bajwa & Stark, 2018). 

Sulfate ester groups present in sulfuric acid hydrolyzed CNCs confer them a certain 

stability in water suspension, which commonly declines over time. Such decline is more 

pronounced at acid pH, resulting in suspensions of particles with very different 

morphologies encompassing from 20 nm wide compact fibrillar assemblies of single 

crystallites (2-5 nm each) to clusters formed of the later that measure up to several 

microns and have a high complexity (Qi, Yu, Zhang & Xu, 2019). Thus, right after the 

hydrolysis reaction, CNC suspensions are composed of different proportions of both 

compact assemblies and clusters with different configurations and some of them are 

unaltered even at neutral pH, if no dispersion method is applied. Although there is a clear 

acknowledgement of the importance of CNC dispersion (Di Giorgio, Martín, Salgado & 

Mauri, 2020), to date no consensual method to characterize the aggregation state of CNC 

suspensions has been agreed. With the term aggregation we are referring to the 

agglomeration of all types of particles mentioned above, being the state of aggregation the 

distribution of particles of different morphology in the sample. 

Techniques like light diffraction spectroscopy (Rasteiro et al., 2008) or laser reflectance 

(Campano, Lopez-Exposito, Blanco, Negro & van de Ven, 2019; Lopez-Exposito, Campano, 

van de Ven, Negro & Blanco, 2019) are useful to monitor CNC flocculation. Nevertheless, 

their detection limit of is not enough to resolve small CNC aggregates, which have all 

dimensions in the nano-scale. So far, only some studies have investigated the influence of 

charge density and ionic strength on the aggregation of CNCs, either by small-angle 

neutron scattering (SANS) (Cherhal, Cousin & Capron, 2015) or by means of turbidity and 
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small angle X-ray scattering (SAXS) (Phan-Xuan et al., 2016). Although these techniques 

are very promising in the detection of slight changes in the CNC aggregation state, the 

unravelling of their output to provide morphological information of heterogeneous 

suspensions is rather complex. The lack of a reliable aggregation characterization method 

implies a large uncertainty in the prediction of CNCs behavior in their application.  

In the context of aggregates characterization, transmission electron microscopy (TEM) 

offers several advantages: it allows the visualization of individual and aggregated 

particles, its resolution is suited to image nanocelluloses, and it permits the rapid 

screening of a large population of particles with tunable sampling (Brinkmann et al., 2016; 

Stinson-Bagby, Roberts & Foster, 2018). However, Chen et al. (2020) indicated that the 

aggregation detected by microscopy probably reflects a combination of pre-existing 

aggregates in the initial suspension and clusters formed during the sample deposition 

process. Despite these limitations associated with the characterization of the bulk 

morphology of CNCs through TEM, a new reproducible method to describe the CNCs 3D 

morphology has been recently proposed by this research group (Campano, Balea, Blanco & 

Negro, 2020). The method involves the previous deposition of a thin layer of Poly-L-Lysine 

(PLL) on the TEM grids to prevent particles from aggregating during sampling or drying. 

Although this approach may entail some flattening effects on the particles during drying, 

especially on large aggregates, we deem it more practicable and accessible than other 

methods capable of capturing the 3D morphology of particles, such as cryogenic TEM.  

Clustering analysis aims to classify a set of elements into groups, considering some 

parameters measured on the sample so that elements in the same cluster are more similar 

to each other than to those in other groups (Wu & Chow, 2004). This approach is 

commonly used in exploratory pattern-analysis, decision-making and machine-learning 

problems, including data mining, document retrieval, image segmentation, and pattern 

classification (Jain, Murty & Flynn, 1999).  
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The hypothesis of this study is that we can describe the aggregation state of CNC 

suspensions and their evolution through the clustering of the different types of CNC 

aggregates obtained from TEM images based on their morphological features. To ensure 

the correct interpretation of the CNC bulk morphology through TEM, we followed the 

method mentioned above (Campano et al., 2020). Images were binarized and the size and 

shape of particles was determined. Afterwards, particles were individually skeletonized to 

obtain the number of nodes and branches in each skeleton. Different combinations of 

these parameters were used to group akin particles, using an automatic k-Means 

classification. Finally, the proposed approach was validated by studying the evolution of 

five types of CNCs with the application of increasing sonication times.  

2. MATERIALS AND METHODS 

2.1 Materials 

Five raw materials were used as CNC source: two bleached kraft pulps of eucalyptus and 

pine, and three commercial celluloses, namely cotton linters, α cellulose and avicel, 

supplied by Sigma Aldrich. Chemicals used for CNC production and characterization, 

H2SO4, Copper(II) ethylenediamine, K2Cr2O7 and Ag2SO4, were of analytical reagent grade 

and also supplied by Sigma Aldrich. PLL used for TEM sample preparation was a 0.1 wt% 

solution and obtained from Electron Microscopy Sciences.  

2.2 Production and characterization of cellulose nanocrystals 

Dry eucalyptus and pine pulps were milled with a CT 293 Cyclotec supplied by FOSS A/S 

(Hillerød, Denmark), filtering through a sieve of 1 mm. Cotton linters, α cellulose and 

avicel were used in powder form as received. Acid hydrolysis of the five celluloses was 

performed according to the procedure described by Campano et al. (2020), in which pulp 

was made to react with 64% H2SO4 for 45 min at 45°C at an acid to pulp ratio of 13.5 mL/g.  
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2.2.1 Hydrolysis yield and dissolved amorphous cellulose  

Crystalline yield represents the percentage of dry mass obtained after dialysis related to 

the initial cellulose content. Amorphous content is the proportion of dissolved cellulose 

(DAC) during the reaction respect to the initial cellulose content as described by Campano, 

Miranda, Merayo, Negro & Blanco (2017). The resting proportion to 100% was considered 

as hydrolysis losses.  

2.2.2 Polymerization degree 

The CNC suspension was dissolved in a cupri-ethyene-diamine (CED) solution and the 

intrinsic viscosity (η) of the solution was determined following the standard ISO 5351. 

Then, polymerization degree (PD) was related to η with the equations 1 and 2, as 

described by Henriksson, Berglund, Isaksson, Lindstrom & Nishino (2008).  

𝜂 = 0.42 · 𝑃𝐷   PD < 950  (1) 

𝜂 = 2.28 · 𝑃𝐷0.76  PD > 950  (2) 

2.2.3 Crystallinity index  

Crystallinity index (Cr.I) was determined from X-ray diffraction (XRD) data, using Segal’s 

method (Segal, Creely, Martin & Conrad, 1959) through the eq. (3).  

𝐶𝑟. 𝐼(%) =
𝐼002−𝐼𝑎𝑚

𝐼002
· 100     (3) 

Where I200 is the intensity of the 200 plane at 2θ = 22.5° and Iam is the intensity of the 

amorphous scatter at 2θ = 18°. Spectra were obtained with a Philips X’Pert MPD X-Ray 

diffractometer with an autodivergent slit fitted with a graphite monochromator using Cu-

Kα radiation operated at 45 kV and 40 mA. The XRD patterns were recorded from 4 to 40° 

at a scanning speed of 0.6 °/min.   
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2.2.4 Zeta Potential 

CNC zeta potential was measured at 0.0005%, after pH adjustment to 6, using a 

NanoBrook 90PlusZeta (Brookhaven Instruments Corporation, NY, USA).  

2.2.5 Sulfate ester groups 

Total sulfur content of dry CNC samples was obtained from elemental analysis using a 

LECO CHNS-932 (Michigan, USA). The analysis were carried out by the unit of elemental 

microanalysis (accredited by ENAC the Spanish Entity of Accreditation).  

2.2.6 Hydrodynamic diameter 

The hydrodynamic diameter of CNCs was assessed by dynamic light scattering (DLS) using 

a NanoBrook 90PlusZeta (Brookhaven Instruments Corporation, NY, USA). Scattered light 

intensity of suspensions at 0.0005% was recorded at 90° and 20 °C. 

2.3 Imaging 

2.3.1 Image acquisition 

Sample micrographs were acquired through a JEOL JEM 1400 plus TEM, operated at 100 

kV accelerating voltage, at the Spanish National Centre of Electronic Microscopy (CNME). 

The CCD camera was an Orius SC200, manufactured by Gatan (Pleasanton, USA), at 2048 x 

2048 pixels resolution and pixel size 7.4 microns. 200-mesh copper grids acquired from 

Electron Microscopy Sciences covered with a continuous layer of 10 nm Formvar and 

stabilized with 1 nm evaporated carbon film were used in this study. Images were taken 

through a one-shot acquisition. A minimum of 20 images were taken for each sample, 

considering different areas of the grid far from each other to have a representation of the 

whole grid surface. 

The procedure used to fix the CNC samples on the grids involved the application of 20 µL 

of a 10% solution of PLL on the grids placed on filter paper, leaving them to dry at 60°C. 
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Then, 10 µL of 0.0005% CNC samples were deposited on the PLL covered grids, also on 

filter paper, and left to air-dry statically to avoid relocation of particles or their 

aggregation. The above concentration was selected based on preliminary tests to minimize 

the effect of dilution on CNCs bulk morphology and to allow an individualization of the 

particles in the images (Campano et al., 2020).  

To achieve different aggregation states CNC suspension samples were submitted to 1.5, 3 

and 4.5 min of high-intensity sonication with a sound power of 50 W, using a UP200St 

digital ultrasonic processor, Heilscher Gmbh (Teltow, Germany). Heat released during the 

sonication treatment was dissipated submerging the samples in an iced bath.  

2.3.2 Image analysis 

TEM micrographs from the samples were binarized using Fiji, an image processing 

package, following the procedure described in a previous study (Campano et al., 2020).  

Morphological features were measured in all particles not intersecting with the border of 

the images and having a circularity below 0.8. Particles having greater circularities were 

identified as impurities. Over 220,000 particles were analyzed. The area, perimeter, 

maximum Feret diameter (MFD), circularity and length and width of the minimum 

bounding rectangle (MBR) were directly measured from the particles. Subsequently, 

particles were skeletonized using the Skeletonize (2D/3D) plugin of the Fiji software. The 

skeletons obtained were analyzed in terms of the number of nodes, i.e. points of union, 

number of branches and total length of branches, i.e. the sum of the length of all branches. 

Given the large volume of data, this process was automatized by means of a Python script 

(attached file). 

Other geometrical parameters were obtained from the combination of directly measured 

ones. Elongation was calculated as the ratio between length and width of the MBR. 

Rectangularity was calculated as the ratio of the area of a particle to the area of its MBR. It 

indicates the normalized discrepancies between the area of the bounding rectangle of the 
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particle and that of the particle itself (Sinha & Patel, 2014). Eccentricity was estimated as 

the ratio of particle’s width to length subtracted from 1. A shape that is symmetrical across 

all its axes, e.g. a circle or a square, will have an eccentricity value of 0. Contrarily, as the 

aspect ratio increases the value tends towards 1 (Mingqiang, Kidiyo & Joseph, 2008). 

2.4 Unsupervised machine learning clustering 

Automatic clustering was carried out applying the k-Means method, which classifies the 

vectors of morphology parameters in k different groups. The optimal number of clusters, 

k, in each case was determined applying the elbow method (Kodinariya & Makwana, 

2013). This method assesses the evolution of the model inertia, i.e. the sum of the square 

distances of each cluster element to their assigned center, as a function of the number of 

clusters and chooses the number k, i.e. the optimal number of clusters, so that the addition 

of another cluster does not significantly improve the modeling of the data. This point 

corresponds to an elbow in the graph of inertias versus number of clusters. For each 

combination of parameters considered, data were fitted into various k-Means models with 

values of k from 1 to 10. 

k-Means clustering was employed to automatically group particles according to different 

size and shape features. The k-Means algorithm aims at grouping a set of n data points 

(particles) belonging to a real d-dimensional space, Rd, around a set of k points (clusters) 

in Rd, called centroids, so as to minimize the mean squared distance from each data point 

to its nearest centroid (Kanungo et al., 2002). k-Means clustering analysis was performed 

using the Scikit-learn Python module.  

To aid the visualization of clusters, inter-cluster distance maps were created in which the 

cluster centroids were embedded in two dimensions by applying a principal components 

analysis. The distance between the centroids indicates the independence of the clusters. 

The analysis was carried out with different input configurations: 

● Option A1: MFD, area and perimeter 
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● Option A2: MFD, area, perimeter and nodes 

● Option A3: MFD, area, perimeter and branches 

● Option A4: MFD, area, perimeter, nodes and branches 

● Option B1: MFD, elongation and circularity 

● Option B2: MFD, elongation, circularity and area 

● Option B3: MFD, elongation, circularity and nodes 

● Option B4: MFD, elongation, circularity, area and nodes 

2.5 Characterization of clusters 

The average 2D fractal dimension (Df) of each cluster was estimated through the multi-

scale MBR analysis, following the procedure described previously (Wozniak, Onofri, 

Barbosa, Yon & Mroczka, 2012), in which the following equation (4) is obtained:  

𝑙𝑛 (𝐴𝑎)  =
𝐷𝑓

𝛼
𝑙𝑛 (√𝐿𝑊) + 𝑙𝑛 (

𝑘𝐿𝑊·𝐴𝑝
𝛼 

𝑘𝑎·𝑀𝐹𝐷
𝐷𝑓/𝛼)   (4) 

Where Aa is the projected surface area of an aggregate, Ap the one of the primary particles 

and kLW, ka and α are parameters evaluated experimentally. The slope of the 

representation of 𝑙𝑛 (𝐴𝑎)  versus 𝑙𝑛 (√𝐿𝑊)  multiplied by the estimated value of α, 1.1 

(Köylü, Faeth, Farias & Carvalho, 1995), would provide the average value of Df for the 

particular cluster. The R2 value of the regression would indicate the degree of similarity 

among the particles of the group. 

For an easier visualization of cluster membership, particles were colored in the images 

using Fiji. A new black background image was created in which particles were filled with 

the color corresponding to the cluster they belonged to.  

3. RESULTS AND DISCUSSION 

3.1 CNC characterization 
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The results of the characterization of CNCs from the five cellulose sources considered are 

shown in Table 1. Both eucalyptus and pine yielded a low percentage of CNCs, with values 

below 10%. The low yield of eucalyptus, around 4,6%, is attributable to the low 

crystallinity of the raw material, associated to the rapid growth rate of this wood (Xiang et 

al. 2016). Thus, high proportions of eucalyptus samples were converted into sugars and 

dissolved in the hydrolysis process (89%). Although the crystallinity of pine was greater 

than that of eucalyptus, its conversion yield was not proportionally higher, in this case due 

to a greater material loss during the procedure. The fact that cotton presented a higher 

crystallinity (90%) resulted in a higher yield (48.5%) and in a relatively low DAC (33.8%). 

The initial crystallinity of avicel was higher than that of wood, 80%, but lower than in 

cotton. The yield obtained with avicel was not as high as expected, probably due to the 

small size of the initial powder, around 50 µm, that caused a greater material loss. The 

production of CNCs from commercial α-cellulose was also considered on account of its 

different morphology compared to the other α-cellulose-rich sources, namely cotton and 

avicel. Commercial α-cellulose presented a Cr.I (61%) similar to that of eucalyptus, as 

observed before (Carrillo, Mendonça, Ago & Rojas, 2018), which led to a low yield (9.3%) 

and a high DAC (75.6%).  

Table 1. Characterization of cellulose nanocrystals (CNCs) produced from different sources.  
 Eucalyptus Pine Cotton Avicel α-cellulose 

Yield (%) 4.6 ± 0.1 5.8 ± 0.8 48.5 ± 0.5 14.8 ± 0.2 17.5 ± 0.1 

DAC (%) 89.0 ± 3.7 79.8 ± 2.8 33.8 ± 0.5 67.6 ± 4.1 70.2 ± 1.3 

Zeta potential 

(mV) 
-22.0 ± 1.6 -22.8 ± 1.3 -23.9 ± 0.4 -24.5 ± 3.5 -23.8 ± 0.8 

Sulfate ester 

groups 

(mmol/g) 

0.378 ± 

0.011 
0.331 ± 0.015 0.168 ± 0.009 

0.256 ± 

0.012 
0.193 ± 0.008 

Length (nm)* 100 ± 50 105 ± 50 160 ± 80 110 ± 55 125 ± 60 

Width (nm)* 21 ± 5 21 ± 7 22 ± 8 21 ± 5 21 ± 11 

PD 212 ± 2 231 ± 15 241 ± 21 178 ± 7 100 ± 3 

Hydrodynamic 

diameter (nm) 
305 ±45 430 ± 60 425 ± 85 395 ± 40 360 ± 27 

*DAC: Dissolved amorphous cellulose; RM: Raw material; PD: polymerization degree 

Jo
ur

na
l P

re
-p

ro
of



13 
 

As observed in Table 1 and Figure 1, the average length of CNCs was similar in all CNC 

types, except in the case of cotton, which presented a wider length distribution having 

some longer crystals than in the other samples. Respect to the width of CNCs, all samples 

showed a very similar value around 21 nm. Taking into account the preferential reaction 

of chemicals for amorphous cellulose, one could explain that most of sulfate ester groups 

remain attached to the edges of the particles. Thus, there should be an indirect 

relationship between the average length of the CNCs and the proportion of sulfate ester 

groups, considering a narrow length distribution. Although the presence of sulfate ester 

groups could contribute to stabilize CNC suspensions, the occurrence of initial 

aggregations associated to high hydrolysis yields will likely compensate such stabilizing 

effect. The difference in the values of hydrodynamic diameters shown in Table 1 may be 

due to the effect of some of their properties influencing the Brownian motion of particles, 

such as length, stability and the presence of some aggregates.  
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Figure 1. Transmission electron microscopy (TEM) images of fully dispersed cellulose nanocrystals 

(CNC) samples at 1000x magnification: a) eucalyptus, b) pine, c) cotton, d) avicel and e) α-cellulose. 

The most relevant factors influencing the aggregation of CNCs are considered to be size, 

surface charge, steric impediments and the presence of amorphous regions, as well as 

medium ionic strength and pH (Cherhal et al., 2015). The last two factors were kept 

constant in the experiments. We therefore considered the following CNC representative 

samples: CNCs produced from cotton as the one with longest individuals, CNCs produced 

from α-cellulose as the most stable suspension (expressed by its zeta potential) and the 

CNCs obtained from eucalyptus and pine as the ones with the highest amount of sulfate 

ester groups.  

3.2 Image elements clustering 

In each clustering approach the corresponding features of particles detected through 

image analysis (over 220,000) were used to train the particular k-Means model and select 

the optimal number of classification groups for the set of parameters considered. In all 

studies, the trained k-Means clustering model was saved so that it can be employed to 

classify new aggregates outside the scope of the present research. The trained models 

receive an input in the form to a vector containing the geometric parameters of a given 

particle (or list of particles) and returns the group to which the particle belongs, as 

follows: 

f(parameter1, …, parametern)particle = groupi    (5) 

When applying the k-Means clustering method, the selection of the most meaningful 

variables is crucial to achieve reliable results of both the number of clusters and their 

membership (Pal, Bezdek & Tsao, 1993). Figure S1 depicts the evolution of inertia as a 

function of the number of clusters considered. The optimum number of clusters was found 

to be 4 when considering three parameters, namely options A1 and B1, and it was 5 in the 

rest of the options.  
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The inter-clusters distance map of each approach is shown in Figure 2. The clusters are 

sized by membership. The general goal involves a high inter-clusters distance and a 

significantly low intra-cluster density (Wu et al., 2004).  

Options A1-A4 have three common input factors, namely MFD, perimeter and area, 

selected for being basic size-related features that convey composite information on the 

relation between size and shape in CNCs. In these four options, the distribution of 

members in the groups was characterized for showing a high variability in the number of 

elements within each cluster, as observed by their areas. One of the clusters (blue) 

contained over 80% of the particles, while the membership of the second one in size 

(yellow) was around 15% (Figure 2a-d). The centroids of these two clusters were visibly 

closer between them compared to the rest of the clusters formed.  

The separation between centroids, i.e. the dissimilarity of clusters seems to be enhanced 

with the inclusion of both nodes and branches (Option A4), as observed in Figure 2d, 

conveying differentiating information when it comes to group CNC elements. 
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Figure 2. Inter-clusters distance map of the result for the clustering of the cellulose nanocrystals 

(CNCs) with the input vectors described for the different options. Colors indicate the different 

clusters (1-5) attending to their membership by decreasing order: blue, yellow, magenta, 

aquamarine and red coral. Legend indicates the membership scale as area in percentage. Note: 

overlapping of two clusters in the 2D space does not imply that they overlap in the original feature 

space. 

Input variables of options B1-B4 include not only size-related parameters but also 

geometrical features. First, a characteristic size: MFD; second, a parameter related to the 

external geometry: elongation; and third, circularity, a parameter related to the 

distribution of area over perimeter, which can be considered as an indirect measurement 

of compactness. Results in options B1-B4 were quite different between them and with 

respect to those of Options A1-A4.  

When considering only MFD, elongation and circularity (Option B1, Figure 2e), a high 

inter-cluster distance was achieved with a homogenous inter-cluster density, desirable 

features when defining clusters since they imply a highly meaningful classification. Thus, 

the clustering of CNCs considering the parameters of Option B1 seemed to be a good 

starting point. To give relevance to the mass of aggregates, the area was also included 
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(Option B2). In this case, clusters were also well distanced, although the distribution of 

particles was more heterogeneous than in Option B1. 

In the case of Option B3 and B4 (Figure 2g and 2h), the inter-cluster distance between 

centroids of clusters 1-3 was quite short, indicating a high similarity among particles 

belonging to these clusters. Although clusters 4 and 5 were very distant from each other 

and from the rest, the high similarity between clusters 1-3 would convey little information 

in the description of the CNC aggregates. 

3.3 Description of clusters 

As it has shown Options A4, B1 and B2 could be good candidates for the clustering of 

particles in CNC suspensions to describe their aggregation. To gain a deeper picture on the 

relationship between size and shape of the CNC aggregates observed in the micrographs, a 

pairwise analysis of relevant parameters was carried out. Figures 3 and 4 show the 

representation of these parameters for options A4 and B2. Graphs for the rest of the 

options are included in the supplementary information file (Figures S2-S7). Clusters were 

numbered and colored according to the total number of elements belonging to them in 

decreasing order. Thus, although colors are the same in all options, the elements 

corresponding to each group are not necessarily the same.  

Figure 3 shows that 95.4% of the elements analyzed had a MFD below 300 nm. Generally, 

when MFD increases, an increase in area was observed. The wide spectrum of areas 

observed in Figure 3a, indicates that there is a high variety in the shape of the aggregates 

formed. Regarding elongation, 87% of the particles had a value below 3, but for MFD 

between 100 and 800 nm, elongation varied in a wide proportion, from 1 to 12. The line 

patterns observed in the graph were due to an aliasing effect resulting from the resolution 

of the images being close to the minimum width detected. As expected, the circularity of 

particles (Figure 3c) followed a marked decreasing trend when MFD increased, given that 

larger MFD was loosely related with aggregate complexity. However, for particles with 
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MFD below 300 nm, circularity of particles varies in a wide range from 0.1 to 0.8, which 

suggests that this parameter plays a significant role in the description of the CNC 

aggregates. Figure 3d shows that although rectangularity of particles presented a similar 

trend to that observed in circularity, the distribution of points was more scattered in 

general.  
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Figure 3. Clustering of particles taking into account features corresponding to Option A4. Evolution 

of a) area, b) elongation, c) circularity, d) rectangularity and e) eccentricity with maximum feret 

diameter (MFD), and f) 𝑙𝑛 (𝐴𝑎)  versus 𝑙𝑛 (√𝐿𝑊) , where the slope of this curve multiplied by α 

returns the value of fractal dimension (Df). Note: legend of a) applies to b), c), d) e) and f). 
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Eccentricity of particles presented values from 0 to 0.9 with over 57.1% in the range from 

0.2 to 0.7. As with elongation, the aliasing effect is visible. Particles present in Figure 3f 

appear to follow a straight growing tendency, similar to that of Figure 3a. The value of 

fractal dimension obtained from the slope of the fitting of this curve has a value of 1.68 

with R2 of 0.93. Nevertheless, it is easy to think that some particles or aggregates could 

have a common fractal dimension in such a way that the aggregates could present 

multifractality.  

The overlapping of clusters observed in Figure 3 expressed the slight improvement in the 

clustering of particles achieved with the use of the parameters considered in Option A4 

compared to that of Options A1-A3, where the split between clusters was almost solely by 

size (Figures S2-S4). Despite this positive result, particles in most of the clusters seemed 

to have neither a common external geometry, indicated by elongation and eccentricity, nor 

a similar distribution of the mass in the space as expressed through circularity, 

rectangularity and fractal dimension. Therefore, these clustering options do not highlight 

all geometrical differences that could be needed to assess their individual importance in 

some CNC applications.  

Three of the clusters formed with options B1 and B2 had a MFD below 350 nm, and almost 

all particles over this size were grouped either in just one cluster (Option B1, Figure S5) or 

in two clusters (Option B2, Figure 4). In both cases a classification by not just size but also 

shape was being made, where Cluster 3 grouped particles of an elongation over 3 and an 

eccentricity over 0.6. Although fractal dimension of this cluster was very similar to that of 

Cluster 2 (1.70), the fact that they have a quite different external shape makes this 

classification very promising. Moreover, the good fitting of the different series of particles 

in Figure 4f and S4f shows that there is a relationship between the particles belonging to 

each cluster.  
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Figure 4. Clustering of particles taking into account features corresponding to Option B2. Evolution 

of a) area, b) elongation, c) circularity, d) rectangularity and e) eccentricity with maximum feret 

diameter (MFD), and f) 𝑙𝑛 (𝐴𝑎)  versus 𝑙𝑛 (√𝐿𝑊) , where the slope of this curve multiplied by α 

returns the value of fractal dimension (Df). Note: legend of a) applies to b), c), d) e) and f). 
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Figure 5 shows two micrographs where particles taking part of each cluster were colored 

using the same color code than in the graphs, according to the different options 

considered. Options A1-A4 (Figure 5a-h) corroborated the preliminary conclusion reached 

before: some aggregates having a similar shape were included in different clusters just by 

a matter of size. The classifications obtained through options B1-B4 (Figure 5i-p), 

however, were more similar to those achievable with other techniques that consider the 

Brownian motion of the particles. In option B1, most of the aggregates were included in 

Cluster 4 (Figure 5i and 5m). Although this option showed the higher inter-clusters 

distance, the inclusion of all aggregates in just one cluster may not have sense for the 

purpose of this study. In this line, the additional consideration of the area of particles in 

option B2 provided a more descriptive clustering in which large and complex aggregates 

(Cluster 5) were separated from large and elongated ones (Cluster 4), as observed in 

Figure 5i-p.  
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Option B1 Option B2 Option B3 Option B4

2 µm

2 µm

2 µm

2 µm

2 µm

2 µm
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2 µm

i) j) k) l)

m) n) o) p)

Option A1 Option A4Option A3Option A2

2 µm

2 µm 2 µm

2 µm

2 µm

2 µm

2 µm

2 µm

a) b) c) d)

e) f) g) h)

MFD, area and perimeter
MFD, area, perimeter and 

nodes

MFD, area, perimeter and 

branches

MFD, area, perimeter, nodes 

and branches

MFD, elongation, circularity, 

area and nodes
MFD, elongation, circularity 

and nodes
MFD, elongation, circularity 

and area
MFD, elongation and 

circularity
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Figure 5. Colored images of an image containing mostly individuals, small fibrillary assemblies and 

small aggregates (a-d and i-l) and an image containing large aggregates (e-h and m-p) and with the 

different options considered. Note: colors have been selected based on the number of particles 

taking part of each cluster: the largest group of each option was colored in dark blue, second in 

yellow, third in magenta, fourth in aquamarine and the smallest group in red coral.  

In the B2 approach, it was possible to identify what could be individual CNCs and small 

fibrillar assemblies in clusters 1 and 2 as those with 0 nodes and just 1 branch; elongated 

CNC elements, likely aggregates with high eccentricity in cluster 3; large and elongated 

aggregates of low circularity, rectangularity and relatively low fractal dimension in cluster 

4; and finally, in cluster 5, large, highly complex aggregates with a low fractal dimension. 

Therefore, this option, which included the MFD, elongation, circularity and area, was 

selected as the most informative clustering approach to describe aggregation of CNCs.  

3.4 Description of the CNC aggregation state 

To assess the effectivity of the clustering method chosen to describe the types of CNC 

aggregates a particle size distribution graph was built for each CNC sample sonicated for 

different times. Since avicel and pine CNCs represent two cases with different initial 

aggregation, the size distribution data of these two types of CNC suspensions are shown as 

an example in Figure 6 and 7. The rest of the samples are included as supplementary 

material (Figures S8-S10). Most of particles belonging to Cluster 1 (blue) had a MFD below 

100 nm. It is highly likely that this group was composed of mostly individual CNCs of the 

smallest size, conclusion sustained by the increment in the number of particles belonging 

to this group observed when the sonication treatment time was increased.  

It is also noteworthy that Cluster 5 (coral red) only appears in the sample without 

sonication treatment and that Cluster 4 (aquamarine) particles, initially distributed in a 

very wide interval of MFD, show a marked decreasing trend in number of elements and 
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span of distribution when applying sonication. This effect was general for all CNC sources 

considered although each case presented a particular evolution. 

 

Figure 6. Evolution of the particles size distribution, in terms of maximum feret diameter (MFD), 

and the visual aspect of the cellulose nanocrystals (CNCs) produced from avicel with the sonication 

time: a) 0 min, b) 1.5 min, c) 3 min and d) 4.5 min. Colors indicate the different clusters identified: 

Cluster 1 in blue, Cluster 2 in yellow, Cluster 3 in magenta, Cluster 4 in aquamarine and Cluster 5 in 

red coral. Note: All particles identified in the whole package of images corresponding to each 

sample were considered in the graphs. 
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As for Clusters 2 (yellow) and 3 (magenta), both encompassed particles distributed in a 

wider MFD interval ranging from 50 to 450 nm in the sample without sonication 

treatment. The intervals of both clusters were observed to vary in a different manner with 

the sonication time, but they mostly do in a moderate manner. 

In view of the above results, it is possible to state that sonication leads to the 

disaggregation of particles belonging to Cluster 5 particles due to the disaggregation, 

which contribute to increase the sum of the memberships of Clusters 1-3 (Figure 6 and 7). 

The same effect was observed in the aggregates of Cluster 4, but, in this case, a longer 

sonication time was needed to disrupt the aggregation. 
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Figure 7. Evolution of the particles size distribution, in terms of maximum feret diameter (MFD), 

and the visual aspect of the cellulose nanocrystals (CNCs) produced from pine with the sonication 

time: a) 0 min, b) 1.5 min, c) 3 min and d) 4.5 min. Colors indicate the different clusters identified: 

Cluster 1 in blue, Cluster 2 in yellow, Cluster 3 in magenta, Cluster 4 in aquamarine and Cluster 5 in 

red coral. Note: All particles identified in the whole set of images obtained from each sample were 

considered in the graphs. 

Although the profiles of the size distribution graphs (without considering clusters) 

obtained at different sonication times were very similar between the considered CNC 
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samples, the TEM images acquired from the suspensions at different sonication conditions 

tell a very different story, being possible to observe the effect of sonication on particle 

morphologies with the naked eye. For instance, despite the total percentage of particles 

between 50 and 100 nm after 3 min of sonication was around 45% in both CNC samples, 

there is a clear difference between the types of CNC particles observed in each case. The 

approach proposed in this paper could contribute to solve this disagreement while 

providing an insight as to the population dynamics of the different types of aggregates 

resulting from the application of disaggregation treatments.  

The description of aggregates could have an enormous significance in some applications. 

For instance, in the use of CNCs as reinforcing elements, the presence of aggregates with a 

short elongation, high complexity and low compactness, i.e. those belonging to cluster 5, 

could entail a loss of efficacy and even a worsening in the macroscopic properties of the 

material (Shojaeiarani et al., 2018). On the other hand, despite cluster 4 aggregates being 

also quite complex and porous, their elongated structure makes them not so detrimental 

for those applications that pretend to improve the strength of the material in just one 

direction (Liu, Yang, Chang, Wang & Ren, 2020). Moreover, there are applications that 

leverage the self-assembling of CNCs into chiral nematic liquid crystals as physical 

templates (Uhlig et al., 2016). In these, a fully dispersed suspension is needed, that can be 

achieved when only clusters 1 and 2 are identified in the suspension. The method 

proposed allows, therefore, a detailed characterization of CNC suspensions aggregates. For 

each particular application, it would be possible to define the adequate treatment to 

ensure the non-presence of certain aggregates, enabling thus the optimization of 

nanocellulose use. 

4. CONCLUSIONS  

A new approach to characterize the aggregation of CNC suspensions based on the analysis 

of TEM micrographs has been developed. Particles from the images were automatically 
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classified into groups according to MFD, elongation, circularity and area. This option 

showed the greatest inter-cluster distance and provided a meaningful description of the 

CNC aggregates in terms of their eventual application.  

With this approach, five clusters were established. Three of them grouped particles of 

MFD below 400 nm with different morphologies. Cluster 1 was characterized for having 

non-branched particles with a low length, being probably individuals or small fibrillar 

assemblies. Clusters 2 and 3 were longer and with a lower fractal dimension than particles 

of cluster 1. The main difference between clusters 2 and 3 lied in the different elongation 

and eccentricity, these being of a greater magnitude in cluster 3. Finally, two groups of 

larger and much more complex aggregates were established as clusters 4 and 5. These two 

groups of particles can be considered as the most detrimental for homogeneous CNC 

applications.  

In the combination of parameters selected, the approach proved capable to describe the 

different states of aggregation of CNCs suspensions induced through sonication in terms of 

the evolution in the number of elements belonging to each cluster. In particular, it was 

possible to discern how the application of sonication to aggregated CNC suspensions 

resulted in both, a decrease in the number of aggregates belonging to clusters 4 and 5, an 

increase in the membership of the cluster 1 and a different evolution in the number of 

particles of clusters 2 and 3, depending on the sample type. The capability to assess the 

evolution of aggregation with sonication seems to prove the potential of the method 

presented, even despite the fact that some inevitable flattening of the particles will occur 

during sample deposition. Finally, given that the clustering models developed were 

trained with a very large population of CNC aggregates produced from different cellulose 

sources and presenting a wide variety of aggregation states, we believe that the approach 

and models described in this paper can serve as a reference or standard for the 

characterization of the aggregation state of CNCs and other nanoparticles with similar 

morphology that tend to aggregate.   
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